Application Note

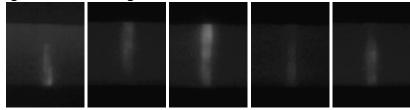
[NOTE] How to Set Profile for Fluorescent Lateral Flow Test to Get the Best Performance

[AN] RTV-2023-0301-001

Application:

There are two types of lateral flow tests, one is the **colorimetric lateral flow test** and the other is the **fluorescent lateral flow test**. Unlike the colorimetric lateral flow test, in addition to requiring different light sources, fluorescent has a more uniform background, so the background causes less interference, as shown in the following figure:

colorimetric lateral flow test

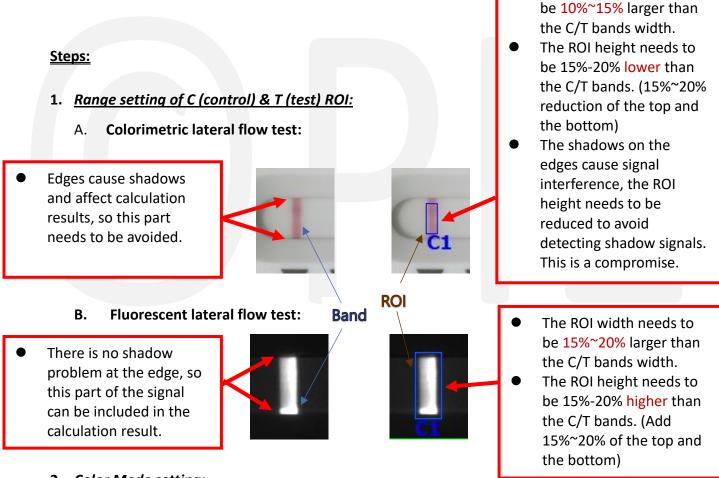

fluorescent lateral flow test

Therefore, when performing a fluorescent lateral flow test, some settings of reader will be different from the colorimetric lateral flow test. Adjustments to these settings can help:

- 1. Allow the Reader to detect more fluorescent signals.
- 2. Increase the intensity of the fluorescent signal.
- 3. Reduce the interference of other background signals.
- 4. Avoid fluorescence quenching

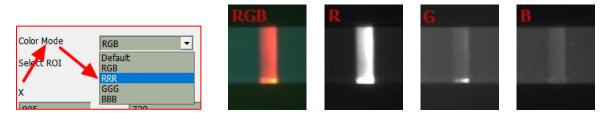
5. Even though the fluorescent lateral flow test (LFT)has higher sensitivity than colorimetric LFT, fluorescent labels such as latex beads are not as stable as the colorimetric labels. Avoid uneven bright bands affecting data results. As shown below:

Product:


<u>RapidScan</u> Lateral Flow Readers Pro with Rapid Test View (RTV)or Rapid Test View_Ethernet Software (ERTV)

Introduction:

When doing a **fluorescent lateral flow test (UV light)** through reader, the setting of **Profile Wizard** should be different from **colorimetric lateral flow test (white light)**. The differences are as follows:

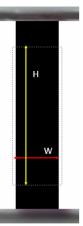

- 1. Range setting of C (control) & T (test) ROI.
- 2. Color Mode setting.
- 3. Use Standard Mode.
- 4. Setting of Integration Method.

 \rightarrow For details of the above settings, please refer to <u>Step</u>.

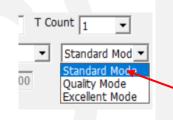
2. <u>Color Mode setting:</u>

It is recommended to choose RRR so the signal is the strongest.

The ROI width needs to


3. <u>Setting of Integration Method:</u>

 It is recommended to choose 2D Integration Method (2D_10/2D_25/2D_50)
→ Because the fluorescent signal is very clear, the 2D Integration Method can fully present the signal value of each part in the ROI, so compared with 1D, 2D can improve the sensitivity.



Integration Method

- 1D: average each H and sum all W
- 2D: sum all H x W pixels value = V_{2D}
 2D_10 = V_{2D}/10
 2d_25 = V_{2D}/25
 2d_50 = V_{2D}/50
- Value big→slop higher → noise high

4. Use Standard Mode:

→ Avoid fluorescence quenching.

Example:

1. Experimental Content:

control variable									
Tost comple	Sample A								
Test sample	(fluorescent lateral flow test)								
manipu	ulative variable								
	15%lower								
The height of DOI	original height								
The height of ROI	15%higher								
	25%higher								
Integration Mathed	1D								
Integration Method	2D_50								
Stra	ain variable								
Repeat the analysis of 13	samples to observe the								
numerical differences of	different settings, and verify								
whether the settings me	whether the settings mentioned by <u>Step</u> are appropriate.								

2. The height of ROI:

A. ROI height data:

298
C1 Height
original height
Height
298
C1 Height
200
25%higher

B. Use the Batch Test function, set the ROI height to the values in the above picture, reanalyze, and get the data as follows (For the "Batch Test" function, please refer to [Application Note RTV-2022-1229-001] "Batch Test" Help Optimize the Profile Setting, the Test Images, and the Test Results):

	original	height	eight 15%lower							15%higher						25%higher					
	Raw data F		Raw data		The gap with the original height		Gap percentage		Raw data				Gap percentage		Raw data		The gap with the original height		Gap percentage		
No	С	T1	С	T1	С	T1	С	T1	С	T1	С	T1	С	T1	С	T1	С	T1	С	T1	
1	28706	3055	25768	2800	2938	255	10.23%	8.35%	29305	3116	599	61	2.09%	2.00%	29615	3142	909	87	3.17%	2.85%	
2	24499	2309	21719	2090	2780	219	11.35%	9.48%	25025	2379	526	70	2.15%	3.03%	25253	2401	754	92	3.08%	3.98%	
3	13034	802	11367	663	1667	139	12.79%	17.33%	13338	850	304	48	2.33%	5.99%	13483	865	449	63	3.44%	7.86%	
4	24399	9271	22167	8597	2232	674	9.15%	7.27%	24889	9485	490	214	2.01%	2.31%	25157	9515	758	244	3.11%	2.63%	
5	23303	9109	20754	8152	2549	957	10.94%	10.51%	23870	9300	567	191	2.43%	2.10%	24145	9359	842	250	3.61%	2.74%	
6	22905	8890	20588	8248	2317	642	10.12%	7.22%	23381	9033	476	143	2.08%	1.61%	23606	9053	701	163	3.06%	1.83%	
7	23620	2460	21102	2194	2518	266	10.66%	10.81%	24107	2548	487	88	2.06%	3.58%	24310	2565	690	105	2.92%	4.27%	
8	22442	2070	19930	1851	2512	219	11.19%	10.58%	22922	2134	480	64	2.14%	3.09%	23125	2142	683	72	3.04%	3.48%	
9	20422	3596	18184	3319	2238	277	10.96%	7.70%	20850	3648	428	52	2.10%	1.45%	20987	3685	565	89	2.77%	2.47%	
10	25802	3166	22885	2824	2917	342	11.31%	10.80%	26454	3231	652	65	2.53%	2.05%	26740	3264	938	98	3.64%	3.10%	
11	19419	3779	17648	3696	1771	83	9.12%	2.20%	19866	3815	447	36	2.30%	0.95%	20078	3844	659	65	3.39%	1.72%	
12	27313	0	24156	0	3157	0	11.56%	N/A	27918	0	605	0	2.22%	N/A	28147	0	834	0	3.05%	N/A	
13	13333	210	11991	180	1342	30	10.07%	14.29%	13602	222	269	12	2.02%	5.71%	13676	219	343	9	2.57%	4.29%	

4

C. The figure above shows:

In the data of **The Gap with the Original Height**, the settings such as **15%LOWER** have a large gap (relative to **15%Higher** and **25%Higher**).

-> If **ROI height** is reduced, there will be more signal loss and cause distortion. If the ROI height is increased, the data changes are not much because there is no noise interference value.

 \rightarrow Therefore, it is recommended to increase the ROI height so that most signals can be detected.

3. Integration Method:

Use reader to analyze different concentrations of sample A with different Integration Methods(1D & 2D_50), and record the T value results. The results are as follows:

	2D_50					1D							
	original height 15%higher							inal ght		15%higher			
	Raw data		Raw data	The gap with the original height		Raw da	ta	Raw da	ta	The gap with the original height			
No	С	C T1 C T1		С	T1	C T1		C T1		С	T1		
1	28706	3055	29305	3116	599	61	9633	1025	8619	916	-1014	-109	
2	24499	2309	25025	2379	526	70	8221	775	7360	699	-861	-76	
3	13034	802	13338	850	304	48	4374	269	3923	250	-451	-19	
4	24399	9271	24889	9485	490	214	8187	3111	7320	2789	-867	-322	
5	23303	9109	23870	9300	567	191	7819	3056	7020	2735	-799	-321	
6	22905	8890	23381	9033	476	143	7686	2983	6876	2656	-810	-327	
7	23620	2460	24107	2548	487	88	7926	825	7090	749	-836	-76	
8	22442	2070	22922	2134	480	64	7530	694	6741	627	-789	-67	
9	20422	3596	20850	3648	428	52	6853	1206	6132	1073	-721	-133	
10	25802	3166	26454	3231	652	65	8658	1062	7780	950	-878	-112	
11	19419	3779	19866	3815	447	36	6516	1268	5843	1122	-673	-146	
12	27313	0	27918	0	605	0	9165	0	8211	0	-954	0	
13	13333	210	13602	222	269	12	4474	70	4000	65	-474	-5	

The figure above shows:

When using 1D settings, increasing ROI will reduce the C/T value; the setting of 2D_50 has no such problem.

 \rightarrow Integration Method recommends using 2D (including 2D_10/2D_25/2D_50) settings.